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Abstract

Visual Question Answering [1][2][3] is a
multi-faceted problem wherein unified vision
and language processing is applied to answer
basic, common sense questions pertaining to
an image. We have successfully achieved our
goal of designing a VQA model that leverages
both visual and textual cues as opposed to a
model that predominantly relies on one of the
input modalities. In doing so, we designed
several model architectures, a fusion-based
model that uses a novel self-conceived fusion
strategy; a parallel and alternate co-attention
based model and an architecture that combines
these co-attention techniques with the self-
conceived fusion technique. Our experiments
with diverse attention mechanisms, neural
network models and word embeddings have
been fruitful. Our best model (alternate
co-attention) gives a validation accuracy of
47% compared to the second best model
(parallel co-attention) that gives a validation
accuracy of 44% . These models perform
way better than our hand-designed baseline
model but fall short compared to our stronger
baselines which have been able to achieve
state-of-the-art performance in VQA. The
reasons for this have been explained well
in the following sections. The code for
our project is hosted at the following link:
https://github.com/DivyanshRoy/CS7650-
project-vga

The  video for our  project is
hosted at the following link:
https://drive.google.com/open?id=1vwYaNXBy
7Gq5jYjZxcR8IEQujtiSMLADb

1 Introduction and Related Work

VQA is essential in building truly intelligent Al
It has applications in scenarios where human-Al
collaboration is required. VQA systems can poten-
tially be used to aid visually impaired users, extract
information from satellite data, interact with home

robots and assist users in shopping online. The
goal of our project is to design a VQA model
that effectively leverages both textual and visual
cues to answer questions about a given image
accurately. The model would have to capture
general knowledge and semantic understanding in
order to correctly answer these questions. This
has been achieved by using attention mechanisms
that give appropriate weights to the images and
questions based on their semantic relevance
thereby producing coherent answers.

Related Work: The availability of relevant
large-scale datasets ignited VQA research, which
has accelerated in the past decade. VQA in its
full-form is still an active research problem. Sev-
eral existing works inspired the undertaking of our
project. The EvalAl VQA challenge attracts top of
the line VQA models every year. The winners of
the 2019 challenge [8] proposed an interesting self
and guided attention approach that used several
stacked modular co-attention layers. This work
advocates experimentation with different variations
of attention and designing model architectures
with mixed attention mechanisms. The MCAN
implementation served as a guiding beacon for our
work.

J. Lu et al. [4] proposed a novel hierarchi-
cal question-image co-attention approach for VQA.
They applied co-attention mechanisms recursively
on several levels of the question embedding
namely, words, phrases and sentences. This was
done in concurrence with the image features. The
end-result was a top-down hierarchy of attention-
weighted question and image features which
were recursively combined to get the final answer
predictions. They described two approaches for
co-attention, specifically parallel and alternate
co-attention which we have adapted for our



project as well. Additionally, we implemented
this approach in unison with our novel fusion
technique for VQA in an attempt to address the
gap between applying attention on images and
questions independently versus using one as an
attention-guide for another.

In addition, we followed [1] for our CNN+LSTM
baseline model. In this research paper, S.Antol
et al. propose a vanilla VQA model that uses
a CNN model to obtain image features and an
LSTM for question features. These features are
then multiplied point-wise to transform them
into a common feature space in order to predict
the final answer. Such an approach has widely
become a benchmark for VQA in recent times
and we decided to base our baseline model on
it. We also explored [9] as a possible avenue,
wherein feature pyramid networks are introduced
as an object detection routine capable of detecting
objects across all scales and can be employed as a
way of providing visual attention. [S][7][10][11]
are also some of the related studies we went
through for our project. Our models try to use
both independent (wherein images and questions
are treated separately and given attention) and
co-dependent (wherein images and questions
are given attention using each other as attention
guides) regimes in unison and combine them using
our novel fusion strategy. We refer to this model as
Fusion+Co-Attention. We noticed a sharp increase
in the learning capacity of this model as it gave the
highest train accuracy relative to all models we
trained. However, the validation accuracy for this
model was not that great because of overfitting
which was very difficult to control. Nonetheless,
this experiment helped us in validating the useful-
ness of combining the two regimes. We feel that
by fine-tuning our fusion strategy and using more
data, we can get the best possible performance for
VQA from the Fusion+Co-Attention model.

2 Methods

2.1 Data

We used the publicly available VQA 2.0 dataset.
The imges included in the dataset come from Mi-
crosoft COCO dataset. On an average, three ques-
tions have been asked per image and the answers
include one word answers like ’yes’, 'no’, 1,
"2’ yellow’, 'red’ etc. The most common answers

among ten answers with count above a certain
threshold are selected as the ground truth. The ta-
ble below summarizes some statistics for the VQA
2.0 dataset.

Images | Questions | Answers
Train | 82,783 | 443,757 | 4,437,570
Split
Val 40,504 | 214,354 | 2,143,540
Split
Test 81,434 | 447,793 | NA
Split

Table 1: Dataset description

Some examples form the dataset are shown
below.

Question: Are these food items mini-pizzas?
Answer: Yes

Question: What are the walls made of?
Answer: Wood



Question: How many donuts are on the rack?
Answer: 0

Figure 1: Image, Question, Answer triplets
from the dataset

Data Collection: After performing some analysis,
we decided to create our own train/validation
split from the VQA dataset described above. We
created a subset of the VQA 2.0 dataset having
104 unique answer classes such that the number
of examples (images) belonging to each class
is at least 100. Additionaly, we made sure that
each answer class had no less than 100 and no
more than 1000 examples each. This helped us
obtain a well-balanced dataset to combat the
class-imbalance problem (illustrated below) that
we faced during early phases of our project. The
VQA dataset is such that Top-1000 answer classes
alone constitute nearly 85% of the data. Getting
a subset also helped us in getting a manageable
amount of data that we could train our models with
given the available resource and time.
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Figure 2: Percentage of dataset represented by
Top-k classes sorted by frequency.

We significantly increased the scale of our
project as compared to the midway report, wherein
we used only 5000 training examples. The dataset
now has 32498 examples in the training split and
20283 in the validation split. Each example in the

data constitutes an image, question and answer
triplet. The answer belongs to one of the 104
possible answer classes.

We resized all images to dimensions 224x224x3
prior to passing them through a ResNet18 to obtain
image features. We also used a VGG-16 network
to get spatial maps of images. All questions were
padded to have a uniform length of 25 words.

We experimented with two different kinds
of models (explained in the later sections). These
models call for image features in different forms.
Hence, we followed two different regimes for
processing our image features. The first regime in-
volves obtaining image vectors from a pre-trained
ResNet18 network. Consequently, each image is
represented by a vector of length 152. The second
regime involved extracting spatial feature maps
of images obtained from the last convolutional
block of a pre-trained VGG-16 network. Every
image is thereby represented by a 3D volume
of dimensions 512x14x14. In other words, each
image is represented using 512 spatial feature
maps of size 14x14.

We converted the answers to class labels
and in doing so, we converted our problem to
that of multi-class classification. Each answer is
assigned a number from O to 103, corresponding to
the 104 unique answer classes.

2.2 Models and Analysis

Image features are obtained by passing the input
images through a ResNet. Textual features from
the questions are obtained using a combination of
embeddings and LSTM. As mentioned above, we
experimented with two different kinds of models
and were able to create a third variant by combining
them together. These models have been described
in detail below.

2.2.1 Fusion model

Our fusion model merges image features obtained
from an image classification model such as ResNet-
18 with question features from an LSTM using a
combination of feature space transformations and
pointwise multiplications. Specifically, the image
features (n, i) are transformed to the question
feature space (n, q) and then it undergoes a
pointwise multiplication with the question features.
The result of these operations is transformed



to a shared feature space (n, s). A similar set
of operations are performed on the question
features. The results of these transformations on
the image and question features undergo pointwise
multiplication to complete the fusion step.
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Figure 3: Fusion model which combined image
and question features

The (i, q) matrix is significant because it can
be used to represent the importance of an image
feature with respect to a question feature. The rest
of the steps are necessary for the fusion of features
with different feature sizes.

2.2.2 Co-Attention models

These models are loosely based on [4]. The models
focus or “co-attend” to both questions and images
opposed to simply focusing on one input modality.
They attempt to decide “where to look™ in an image
and “what to listen to” in a question to produce the
answer. Two broad architectural forms for the co-
attention model were adapted from [4] as discussed
below. These models do not use feature hierarchy
as described in the original work.

1. Parallel Co-Attention: This variant of the
co-attention model builds attention over the
image and the question concurrently. The

image spatial maps and question embeddings
are subjected to a series of transformations
to obtain the final attention maps. The
attentions weights are obtained and subse-
quently applied to the images and questions
independently of each other.

Question

Figure 4: Parallel Co-Attention model
(Source:[4])

2. Alternate Co-Attention: This variant

alternates between paying attention to the
image and the question. The underlying idea
is to use one entity as the guiding factor to
give attention to the other entity. First, the
question is taken as the guiding factor to give
attention to the image and then the images
guides the attention given to the question. To
summarise, attention weights for one entity
are obtained using the other.
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'

Figure 5: Alternate Co-Attention model
(Source:[4])



Upon obtaining the attention weights, the input
modalities (images and questions) are multiplied
by their respective weights to get attention
weighted modalities. These are then fed into an
answer generation unit that combines them and
passes the result through a multi layer perceptron
to get the softmax predictions.

The parallel and alternate co-attention mod-
els were trained separately on the data and a
comparison of their performance is included in the
results section below.

2.2.3 Co-Attention+Fusion model

Our Co-attention+Fusion model engages the fusion
strategy implemented in our fusion model, in the
answer generation part of the co-attention models.
The fusion mechanism is used to combine the at-
tention weights for images and questions obtained
from the parallel and alternate co-attention models.
These combined weights of the two models are
in turn fused again to obtain a single aggregated
representation, which is used to predict answers.

i
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Parallel Co-
attention

Alternating Co-
attention

Fusion model Fusion model

Answer
Generation
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Figure 6: Fusion model combining features of
Parallel and Alternate Co-Attention models

2.3 Baseline Models

The baseline used in our project is a simple
CNN+LSTM baseline. The question embeddings
are first passed through an LSTM. The question

features obtained from these embeddings are
multiplied in a pointwise fashion with image
features. These image features are obtained using
Resnetl8 (as mentioned in the data collection
section above). The combined feature vector is
then fed into an MLP to get softmax predictions.

[1]

We also use [4] and [8] as our baselines.
These are eminent works in the field of VQA and
serve as a tight baseline for any endeavour in this
field. The results obtained from our models are
compared with all three baselines.

3 Results

3.1 Experiment Setup

Our data, as mentioned before has about 32k
training examples and 20k examples in the
validation set. We attempted to make it well
balanced by restricting the number classes to those
that had at least 100 distinct examples (images)
belonging to them. At the same time, we made
sure that the number of examples that a class could
have were no more than 1000. This helped in
reducing the errors we were getting earlier due to
class imbalance.

We experimented with five different kinds
of models, namely the fusion model which uses
our fusion strategy, co-attention models (both
parallel and alternate co-attention that use a
non-hierarchical representation of inputs), a
combination of fusion, parallel and alternate
co-attention models and our baseline model
(CNN+LSTM). These models were implemented
and trained from scratch and perform reasonably
well, if not better, when compared to our stronger
baselines.[4][8]

The experiments were conducted with a batch
size of 1000, 3000 and 5000 on our training and
validation data. Initially, we experimented with
learning rates between le-3 and 4e-4. The fu-
sion+attention model required a relatively lower
learning rate than the fusion and attention models
separately. We worked with different optimizers
such as Adam and RMS Prop. We also used an LR
reducer on Plateau with Patience=3, Cooldown=0
and decay rate as 0.3 while monitoring the vali-
dation loss. This helped in obtaining significant



improvements over our previous results. For the
loss functions, we switched between Cross entropy
loss and Focal loss. A significant challenge while
training was to control overfitting of the models.
This was done using regularization techniques like
dropout, larger batch sizes, adaptive learning rates
and batch normalization. Further details about hy-
perparameters are mentioned below.

3.1.1 Focal Loss

In datasets with a large class imbalance the cross
entropy loss contribution is largely comprised of
negative examples from easily classified examples.
Focal loss increases the focus on examples that are
harder to train by down-weighting the loss from
examples that are easy to classify. Focal loss adds
a factor of (1 — p;)” where y is a hyperparameter
that can be tuned.

Focal Loss(p;) = —(1 — p¢)” log(py)

When v = 0, focal loss becomes equal to
the cross entropy loss.

3.1.2 Cross Entropy Loss

Cross Entropy loss is used for measuring the per-
formance of a model for multi-class classification
tasks. It takes softmax scores represented by prob-
ability values for each class in the range [0,1] and
tries to maximize the score for the correct label.
The loss increases as the predicted labels diverge
from the true labels.

L(,y) = = Y (vi>log 3is)
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3.2 Result Comparison

We compared our models based on the validation
accuracy achieved on our validation set. The results
are summarized below. All accuracy values are in
percentages.

Train | Validation
Accu- | Accuracy
racy
Fusion model 60.9 44.1
Parallel Co-Attention | 73.8 448
model
Alternate  Co-Attention | 58.3 47.5
model
Fusion+Parallel+Alternate | 75.3 42.3
Co-Attention model
Baseline (CNN+LSTM) | 59.4 353
model

Table 2: Performance comparison of models

We observe that the best performance is achieved
by the alternate co-attention model. This is because
when giving attention to one entity (image or ques-
tion), it uses the other entity as the guiding factor
and is able to leverage the semantic relatedness
between the image and question. The parallel co-
attention and fusion model perform comparably.
The parallel attention model is effective in giving
attention but its limitation is that it considers the
two entities separately while doing so. The fusion
model is based on transforming the image and ques-
tion to a shared space. In doing so, it considers the
other entity as a guidance (just like alternate atten-
tion model). Interestingly, the performance of the
fusion+parallel+alternate attention model is lower
than that of the alternate and parallel attention mod-
els. This is because it began overfitting at a very
early stage during training. However, it depicts the
maximum learning capacity. Our baseline model
is based on simple pointwise multiplication of the
image and question embeddings (close to vanilla
VQA model) and was thus expected to show lim-
ited performance.

Our models performed better than our base-
line i.e. CNN+LSTM model. However, our co-
attention models didn’t perform as well as the co-
attention models described in [4]. This because
they used a hierarchical representation of questions
and images and applied attention on both images
and questions at three different levels. The atten-
tion weights were then combined recursively to get
the final weights. In addition to this, the model
was trained on the entire train-dev split of VQA-v1
dataset. It was not possible for us to train our mod-
els on so much data due to time and computational



limitations. The hierarchical model described in
[4] achieved state of the art performance in 2016
by achieving 66.1% accuracy on the standard test
split of the VQA challenge for multiple choice cor-
rect questions and 62.1% for open-ended questions.
The MCAN implementation [8] achieved 70.63%
accuracy in the 2019 VQA challenge on the test-
dev set. They used stacked attention layers which
had both self and guided attention mechanisms and
used transformers for training their model. Train-
ing transformer models is a time consuming task
and is heavy on compute. Therefore, we decided
not to venture in this direction any further in the
interest of time.

We tested various hyperparameters like the learn-
ing rate and learning rate decay, batch size, dropout,
question embedding dimensions, image features
sizes and types (spatial feature maps and vectors).
We chose these parameters as they had the max-
imum influence on model performance and were
of greatest importance to the model architecture.
We also tested various loss functions and optimiz-
ers and played around with their hyperpaprameters
like weight decay, momentum and other parameters
central to the optimizers we were using (like «, 3,
v values). In addition to this, we also experimented
with 1-D batch normalization over embeddings to
make the neural network more stable.

Our goal was to explore the importance of atten-
tion in VQA. We wanted to understand the interde-
pendence of question and images input modalities
and conduct experiments that provide evidence for
our initial hypothesis that just focusing on the im-
age or the question is not sufficient for VQA. The
model must learn to consider both input modalities
simultaneously in order to be able to produce ac-
curate results. The results concluded above are a
clear proof for our hypothesis. Our baseline model
considers the question and image separately and
does not try to capture the interdependence between
them. In addition, it gives equal focus to all parts
of the image and question. The attention models
try and gauge the most relevant parts of the given
inputs and perform better than the baseline. The
results obtained by the attention model are not spec-
tacular when compared to our stronger baselines
[4][8] but they provide evidence for the fact that
capturing the interdependence between question
and image and focusing on their relevant parts is a
more successful strategy for VQA.

A detailed analysis of our models made their in-

herent lack of generalizability apparent. The mod-
els were more or less memorizing the answers to
the question and could generalize to unseen data
only to a certain extent. They were leveraging the
hidden priors in language and visual cues. Detailed
diagnostics (loss and accuracy plots) for all models
are included in the appendix. This is a well-known
problem in VQA and is still an active research area.
We feel that one way of adding more generaliza-
tion power to the model is to try more elaborate and
extended neural network structures like differen-
tial neural networks or deep modular co-attention
networks that have greater learning capacity. An-
other way is try data augmentation techniques like
generating (image, question, answer) triplets from
the available data such that only the answer differs
while the question and image is the same. This
prevents the model from learning the input priors
while at the same time being able to generalize
better. [13]

We illustrate the top-10 and bottom-10 classes
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Figure 7: Top-10 and bottom-10 classes ranked
by validation accuracy

The plots show that the model performs better
on answers whose corresponding images have dis-
tinct visual features, implying that the model has a
huge dependence on the vision module for its clas-
sifications. It can be seen that the model struggles
to answer questions whose answers are large num-
bers so the model has a difficult time answering
questions where it is expected to count objects in
images.




3.3 Work Division

Divyansh: Created the larger version of the dataset,
implemented and trained the fusion model and
report preparation.

Shubhangi: Implemented and trained parallel and
alternate co-attention models, trained fusion+co-
attention model and report preparation.

Monica: Implemented and trained a hierarchical
co-attention model, report and video preparation.

4 Conclusion
Some low-level inferences are discussed below:

1. The way question embeddings are learnt do
not directly affect the performance of the sys-
tem. We tried using pretrained Glove embed-
dings of varying sizes as well as generating
embeddings from scratch. The model perfor-
mance was not significantly affected by these
methods of learning embeddings. This is prob-
ably because we trained the model for nearly
250-300 epochs which gave the model suffi-
cient time to learn new and meaningful embed-
dings. Moreover, pretrained embeddings have
a limited vocabulary, which led us to decide
to learn our own embeddings from scratch.

2. Attention models are prone to overfitting. We
had to constantly monitor the models to check
for this. Several prior studies cement this con-
clusion [13]. They suggest that after training
for a while, models begin to memorize lan-
guage and visual priors and show a strong
dependence on them for their performance. A
well known example is when a VQA model is
asked ”what is the color of the banana shown
in the picture”, it would answer ’yellow” al-
most all the time, even if the banana in the
image is, say green in color. The answer to
this question is in fact yellow” in a majority
of the cases. Training VQA models, espe-
cially attention-based VQA models require
constant examinations for such cases and for
their generalizability.

Some high-level conclusions that can be drawn
from our work are as follows:

1. Attention mechanism considerably improve
the performance of VQA models. They learn
to focus on both image and questions and ven-
ture into learning how a human would answer

a question about an image. They have the
power to model human intuition while answer-
ing these questions.

2. However, these models are also prone to mem-
orizing the answers and have to be equipped
with generalizability. The intermediate repre-
sentations of the models must be analysed to
examine that they are indeed learning. One
must make sure that they are learning the rele-
vant parts of the inputs.

3. Overall if trained with abundant data and com-
pute, these models do reflect the capability to
make semantic sense from the inputs given.
They have tremendous potential of being em-
ployed in numerous beneficial applications.

We find that the models we trained give a decent
performance on our train/validation split. They
are nowhere close to the established state of the
art performance but they were able to beat our
hand-designed baseline by a huge margin. A few
reasons for that is firstly that the state of the art
models have been trained on entire VQA and
MS-COCO datasets. It was not possible for us to
use so much data but we still utilized every ounce
of computational resources we had to train our
models on a considerably large subset of the data.
Considering this, we conclude that our models
perform reasonably well. Another reason for
limited performance is the memorizing tendency
of models. This has been discussed previously.

For future improvement, we can try expand-
ing the scale of data used by using more existing
data or adding to the existing data through
augmentation. One can also experiment more with
our fusion strategy. Instead of using pointwise
multiplication, we can use other techniques like
bilinear pooling [12] or convolution. Another
way of extending the existing implementation is
to use a hierarchy of input features that focus on
both micro and macro details to harness them
individually.
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Figure 1: Fusion model Loss curve
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Figure 9: CNN + LSTM model Loss curve
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