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Motivation and Problem Statement

Study and research of Antarctica is important and can help us
to analyze:

=>  Effects of global warming on ice sheets
=> Ice sheet dynamics affect rise of sea-level

=>  How has Antarctic environment evolved over the years
without human interference?
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Motivation and Problem Statement (contd.)

Remote sensing data - huge

Examining it is time consuming

Automation of remote sensing analysis -
need of the hour to PR .
@  effectively examine the sensor T )
data and gain valuable insights and
trends about the subcontinent
@ Better information extraction and
semantic analysis
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What are we doing?

=>  Aim: Automating this process to facilitate research in these domains

=>  Focus : Extract rock outcrop from Antarctic Landsat Imagery using Semantic Segmentation




Dataset

=> Dataset - Landsat 8 Imagery
=>  Properties - Global, Temporal, Hyperspectral
->  Size - 1 GB per image (approximately)
->  Resolution - 9000 X 9000 pixels (approximately) 30 meters/pixel
-> Bands:
€ Band 1 senses deep blues and violets.
€ Bands 2, 3, and 4 are visible blue, green, and red
€ Band 5 measures the near infrared, or NIR
€ Bands 6 and 7 cover different slices of the shortwave infrared, or SWIR
€ Band 8 is the panchromatic — or just pan — band. It works just like black and white film: instead of
collecting visible colors separately, it combines them into one channel.
€ Band 9 covers a very thin slice of wavelengths: only 1370 + 10 nanometers
€ Band 10 and 11 are in the thermal infrared, or TIR — they see heat.
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Related Work

We frame our project as a binary semantic segmentation problem. To approach this problem, we need labels for
our dataset and a CNN-based segmentation model to train on the labeled imagery. Manually labeling a sufficient
guantity of images to train a model is infeasible.

To choose labels, we researched published continent-scale digital geological datasets. We chose an automatically
generated dataset published by Burton-Johnson et. al., 2016. They use pixel-wise classification of Landsat 8 bands
to generate a geological dataset. They also publish the list of scenes used as input for their model. Because of this,
we can perform a direct comparison of our model to theirs because we have the exact input and output. This
enables a more comprehensive understanding of our model’s performance.

To choose a model, we found a publication by Chai et. al. in 2019 that used segmentation CNN models to classify
clouds, cloud shadows, and ground features in Landsat 8 images. This is very similar to our task and we use the
paper to choose a specific model, appropriate training data volume, and hyper parameter starting points.

Related Work

=>  Several continent-scale geological datasets exist.
These include the ADD, the SCAR GeoMap project,
and a dataset produced by researchers from the
British Antarctic Survey.

=> The ADD and GeoMap datasets are manually
generated geological maps.

=> These are inappropriate as labels because rock
features have been generalized to display well on
large-scale maps.

An Example of feature generalization for
manually-labeled geological map datasets

© SCAR GeoMAP and GNS Science 2019



Related Work

The British Antarctic Survey dataset was generated by an
automated methodology that involves masking Landsat 8 images
with heuristic thresholds on several band combinations.

This pixel-wise classification yields higher precision and accuracy
than any manual method.

Related Work
Band Combination Examples

NDSI . NDWI

OLI band 3 — OLI band 6 NDWI = OLI band 3 — OLI band 5

NDSI =

OLI band 3 +OLI band 6 OLI band 34+ OLIband 5°



Band 10: Thermal Infrared

Band Combination Examples

Related Work

Tirs vs Blue

Related Work

Heuristic Thresholds
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Figure from Burton-Johnson et. al., 2016



Related Work

=> Burton-Johnson et. al., 2016
€ Band combinations used to categorize image
features like clouds, sea, sun-lit rock, shaded rock,
sun-lit snow, shaded snow.
@  Use heuristic thresholds on band combinations to
isolate sun-lit rock and shaded rock from all other
classes of pixels

Results from publication (Table 1.) : 18

Methodology Correct % SD  Commission %  SD  Omission % SD  Classification  SD
accuracy %

This study 85 8 17 13 15 8 74 9

Optimum NDSI 68 30 7 6 32 30 63 27

ADD rock outcrop 70 14 154 212 30 14 39 '19

Related Work

Chai et. al., 2019 uses PSPNet, Unet and Segnet segmentation models to
classify Landsat images into 3 classes: Cloud, cloud shadow, and ground.

Landsat 8 Bands Model Output
Metric Value
Overall 93.45 %
Accuracy
Commission 14.36 % .
Error ’
Omission 18.98 %
Error

Figure from Chai et. al., 2019




Related Work

=> Chaiet.al.
€ Proof that using a semantic segment model is an effective
methodology for classifying Landsat 8 imagery.
@ Data preprocessing methodology accommodates large input file size
and allows model to run on “reasonable” amounts of RAM.
€@ Established appropriate data volumes for training an effective
classifier.

Table 1
Training, validation and test sets for L7 Irish and L8 Biome. The number of 512
* 512 30 m images in each set is as follows.

Images (512 * 512)

Train 60% Val. 10% Test 30%
L7 Irish 2732 420 1328
L8 Biome 2410 378 1178

Computing Environment

=>  Machine Details
€ Environment- Google
Colab
€ Storage used on Google
drive- ~176 GB
@  GPU specs- Tesla P100

Scene Preprocessing

~

(depending on
availability)

€  Running Time ~ 200
s/epoch (Running time
improves on the second
run of the same

Section

notebook because of
caching in Colab)
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System Architecture

]

Label
Download using Stacking and Accuracy
Scenes >>Bunon Johnson>> Chunking >>Segnet Model>> Metric >
Model

System Architecture Components

>

-

Download Scene

@  Scriptis used to download the scenes from a list of scene ids

Label using Burton Johnson

@ Convert shapefile features that overlap with training scenes to binary raster with 30 m resolution. This
serves as a pixel-wise rock/not-rock label.

€ Labels have intrinsic error from the heuristic thresholds used by Burton-Johnson model

Stacking and Chunking

€ Convert Landsat 8 band .TIF files into a single numpy array (Scene height X Scene width X 11 Landsat
bands + 1 label band)

€ Divide single scene into chunks (512 X 512 X 11 Landsat Bands + 1 label band)

Segnet Model

€ Input: 1 chunk and corresponding label. Output: binary prediction raster

Accuracy Assessment

€  Overlay binary prediction raster with binary ground-truth raster (provided by Alex Burton-Johnson)

€@ Determine True Positives, False Positives, True Negatives, False Negatives.

€  Calculate accuracy metrics



Model Selection- Why Segnet?

Significantly smaller and faster than other neural architectures

Small memory and computational requirements, time efficient model
Helps in delineating the boundaries of objects

Reduces number of learnt parameters

Compatible with a wide range of encoding-decoding architectures

\ 200 20 20 77

System Architecture Components (contd.)

=> Segnet

Supervised learning to predict pixel-wise classification labels

It has encoder and decoder layers followed by a pixel-wise classification layer
Encoder units- 13 convolutional layers, 2x2 max-pooling layers

Decoder units- Upsampling, convolutions and per pixel softmax classifier

L 2R 2R X 4

Convolutional Encoder-Decoder
Input

Output

Pooling Indices Y

RGB Image

[ conv + Batch Normalisation + ReLU Segmentatlon
-Pcoling I upsampling Softmax




Model Assessment Metrics

=>  Accuracy Metrics

€ We didn’t choose “Overall Classification Accuracy” as a metric because of the huge class imbalance in
our dataset. Since 98% of the pixels are ice, even if our model predicts everything as ice, we get an

overall classification accuracy of 98%.
@ So we use accuracy metrics only for our rock predictions. These metrics are - Rock classification
accuracy, rock commission error and rock omission error.

@ Rock Classification Accuracy- Pixels that our model predicted correctly as rock. This is the metric that

Burton Johnson et. al used to report their accuracy. So we can compare our results to theirs using this

Rock Classification Accuracy = lou — _Area of Overlap
oU =

Area of Union

Model Assessment Metrics

=>  Accuracy Metrics
€ Rock Commission Error - Pixels that our model predicted as rock but that were not actually rock

False Positives = False Positives
Rock Commission Error =

(False Positives + True Positives) Model Output Positives

€ Rock Omission error - Pixels that our model predicted as “Not Rock” but were actually rock

False Negatives

o False Negatives
Rock Omission Error =

(False Negatives + True Positives) Ground Truth Positives



Experiments

=> Data: 7000 -512x512 images
=>  Test: 9 manually labeled images

Result:
Hyperparameter Values Tried Best option
Learning Rate 0.001 t0 0.05 0.01
Optimizer SGD, ADAM ADAM
Data Volume 1% feature rich data, 5% 1% feature rich data
feature rich data, all data
Class Weight 1:1, 1:20, 1:50 1:1

Experiment 1

=>  Learning rate : Multiple experiments with varying learning rates were performed, but we obtained invalid
results for all values except 0.01



Experiment 2

=> Data: Filtered data to use only images which have at least 1% of the pixels labeled as rock.

=> Learning rate:0.01

=>  Optimizer : SGD

=>  C(lassification accuracy : 0.26 £ 0.74 %

=>  Omission Error:99.74 £ 0.75 %

=>  Commission Error : N/A (No rock pixels were incorrectly labeled)
|

Experiment 3 LC80311222014338LGNOO

false_negatives

= false_positives
=== true_positives

=> Data: Filtered data to use only images
which have at least 5% of the pixels
labeled as rock.

Learning rate : 0.01

Optimizer : Adam

Classification accuracy : 27.75+21.72 %
Omission Error : 44.23 £ 25.66 %
Commission Error : 62.79 £26.13 %

A2 2 2
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Example of high commission error



Experiment 4 (Best model) _ 1C80311222014338LGN0O

\7

Data : Filtered data to use only images which
have at least 1% of the pixels labeled as rock.
Learning rate : 0.01

Optimizer : Adam

Classification accuracy : 30.48 £ 17.6 %
Omission Error : 41.05 £ 18.94 %
Commission Error : 59.57 £ 21.56 %

2 2 2

All further results have been generated from this
model.

50 100 150 200 250

Reduction in commission error

Results
LC80631112014002LGNOO _

For the presented image

Metric Value

Classification Accuracy 59.88 %

Commission Error 33.40 %

Omission Error 14.41 %




Analysis LC82071182013336LGNOO

false_negatives

Factors affecting prediction: — o e

=>  Sun elevation - Areas of low sun elevation as that shown
in the image, create contrasting regions of sunlit and
shaded rock outcrops. We are able to predict most sunlit
rocks correctly, but get high omission error in shaded
rocks.

The plot in the following slide shows a trend between sun elevation
and omission error in all test images. If we consider the circled
image as an outlier, we do see a decreasing trend in error as sun
elevation increases. The outlier image (shown in next slide) gives low
error in spite of low sun elevation because it’s a relatively clean
image with even textured ice and a single big outcrop of rock.

150 200

Low sun elevation

Analysis (contd.)
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Analysis (contd.)

Factors affecting prediction:

=>  Cloud cover - Areas which have dense cloud cover create
cloud shadows on the ground which get mispredicted as
rocks giving high commission error.

=> Coastal features - Areas which have a coastline cause high
commission error in the regions of melting ice and water.

We observe that plotting these features do not show statistically confident trends.
Hence, we stick to a qualitative assessment to see the impact of these factors.

LC81041072013303LGNOO

Cloud cover Coastline



Conclusion

-

Observed significant impact of feature density in training data on
model performance. 1% feature rich data gave the best results due
to the high class imbalance in our dataset

Established trends in classification accuracy with respect to sun
elevation and cloud cover which helped in distinguishing between
easy and hard cases

Our model struggles with same types of hard cases established by
Burton Johnson et al - cloud cover and coastline

Make our code base open source to facilitate future work on this
dataset

Conclusion (contd.)

>

Our Model 30.48+17.6 %
Burton-Johnson et al., 2016 74 + 9%
Chai et. al., 2019 93.45% (overall Accuracy)

Further tuning and training is needed before our model approaches the accuracy of the Burton-Johnson
model.

If the class imbalance problem can be overcome, models could be trained to produce output from spectral
bands not considered by the Burton-Johnson model. If the signal from these extra bands are incorporated into
an ensemble classifier with other classifiers, the Burton-Johnson accuracy could be exceeded.

Direct metric comparisons with Chai et. al. are not possible, but further tuning and training is needed before
concluding whether or not CNN-based segmentation models are appropriate for this classification task.



Future Work

Ensembling with different band combinations or different input subsets or different CNN models
Instead of binary classification - classification into multiple classes - ice, rocks, clouds, water

227

Use noise correction techniques to reduce effect of noise in training data. We can use more deconvolution
layers to denoise images. We can also use classic computer vision techniques like Median Blurring and
Gaussian blurring before training

Use different models like UNet or PSPNet instead of Segnet

Use transfer learning on pretrained models

227

Use semi-supervised learning instead of using Burton-Johnson labels - We can cluster similar data using
unsupervised learning and use the 9 manually labelled scenes to label the data
=>  Refine heuristic thresholds to improve label quality
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