
Supervised Learning Benchmarks for Point Goal Navigation in Photo-realistic
indoor cluttered environments

Muhammad Zubair Irshad
mirshad7@gatech.edu

Asawaree Bhide
abhide9@gatech.edu

Shrija Mishra
smishra309@gatech.edu

Shubhangi Upasani
supasani8@gatech.edu

Abstract

The aim of this work is to solve the point goal navi-
gation task in photo-realistic, indoor environments using
Habitat. In this task, a virtual agent (robot) starts at a
random position in an unknown environment and is given
the coordinates of where it has to navigate to. This is
not a trivial task in realistic, cluttered environments as
the agent has to traverse an environment while avoiding
obstacles in the absence of a map. We present a previously
under-explored paradigm in point goal navigation task
i.e. using supervised learning for point goal navigation.
We implement a benchmark based on RNN that preserves
the temporal information present in the trajectories and
predicts the most optimal next action given an observation
action pair as ground truth. Our experiments reveal
that supervised learning shows promise for this task.
We evaluated our work against various classical and
deep learning baselines and report losses and accuracy
along with SPL metric for these baselines. Our imitation
learning approach achieved an accuracy of 56%. We
have open sourced our code base, which can be accessed
here:https://github.com/zubair-irshad/
habitat_imitation_learning/

1. Introduction

1.1. Motivation

Given egocentric images from an RGB-D camera and us-
ing agent poses, we tried to solve the task of point goal nav-
igation in an unseen indoor environment (without ground-
truth map). We used the ’Success weighted by Path Length’
(SPL) metric for our baselines and accuracy as perfor-
mance metric for our approach. We tried using a behav-
ior cloning approach to this problem. The objective was to
train an agent to successfully navigate from its random start-
ing point in the environment to the given target coordinates
and learn an optimal mapping from states to actions. Agent

is said to have successfully reached if it is within 2 times
its own radius of the target position when STOP action is
performed.

1.2. Related Work

Indoor navigation has been in discussion since long and
has been studied extensively in classical robotics. Recent
advancements in deep learning have opened avenues which
were unexplored earlier. This problem statement is usually
approached using methods broadly divided into two cate-
gories: supervised learning (SL) and reinforcement learning
(RL). Most of the previous works focus on RL approaches.
A major challenge with RL algorithms is to define a reason-
able reward function, agent’s hidden state and goal state.
Another issue with using deep RL for navigation in the real
world is that training agents is computationally expensive
and requires a huge amount of data. This specific issue
has been dealt with in [10]. In this work, the authors have
solved the task of target-driven navigation using an actor-
critic model and have proposed a new framework (AI2-
THOR) which lets agents interact with their environments
to collect training samples.

In [14], the authors present a family of policy optimiza-
tion methods for RL. To perform policy updates, they alter-
nate between sampling data from the policy and performing
multiple epochs of SGD on the sampled data.
[12] solve the navigation task without access to a map, di-
rectly from an RGB-D camera and a GPS+Compass sensor,
with a focus on distributed RL.

In addition to the above works, we studied [3], a use-
ful survey that discusses various learning-based approaches
and the applicability of supervised vs reinforcement learn-
ing to visual navigation. Inspired by this, we decided to
explore some supervised learning approaches like imitation
learning and behavioural cloning for our problem objective.
In the imitation learning approach, a model is trained to
predict expert behavior and agent actions are consequently
learnt from this expert.

1

https://github.com/zubair-irshad/habitat_imitation_learning/
https://github.com/zubair-irshad/habitat_imitation_learning/

An interesting work in the field of supervised learning is
[8] where the authors work on navigation among humans,
which is especially challenging because human movement
is unpredictable. They have used a learning-based percep-
tion module and a model-based planning module for this
work. For the perception module, a supervised learning ap-
proach has been used to train a CNN model on RGB images
of a photo realistic dataset.

[4] presents DAGGER, an iterative algorithm to train a
stationary deterministic policy. DAGGER trains a policy
using an aggregation of all datasets collected during past
iterations under previous policies. The idea is to collect in-
puts during training that the policy may come across during
test time.

In [2], the authors apply both classical and learning
based methods for environment exploration. Using ana-
lytical path planners with three learned modules, Neural
SLAM, Global Policy and Local Policy, the paper leverages
the patterns and regularities present in the layouts around.
The authors have successfully transferred this strategy to the
Point Goal Navigation Task.

A limitation of imitation learning approach is that it re-
quires the expert to provide action labels without being fully
in control of the system. The expert provides actions only
during training so the agent can be brought back to the right
track if it took a wrong action. In the testing phase how-
ever, the agent has to predict its own actions. The errors
that creep in because of no supervision at test time are not
accounted for in training and are known as exposure bias.
This also decreases the safety guarantees and when using
humans as experts, is likely to degrade the quality of the
collected labels due to perceived actuator lag. HG-Dagger
[7] resolves some of these issues. Behavioral cloning also
suffers from some other limitations such as data mismatch
and compounding error issues.

SL, although not as explored as RL for this task, has
tremendous potential and the motivation for our project is
to assess the effectiveness of the SL approach.

1.3. Impact

Autonomous robots are gradually becoming indispens-
able for various industries and some crucial life-saving
tasks. Solving the task of visual navigation in simulation
is a step towards training physical robots to navigate in the
real world (in both indoor and outdoor settings). This task is
of great interest in the AI community, where current work
is focused on providing agents with human-like capabili-
ties. Studies like [9] show that there are 3 million people
with a mobility impairment and such navigational robots
aid to their independence by helping them with groceries,
medicines, etc. Point Goal navigation is an especially im-
portant task in this domain, where a robot could ultimately
move through a real environment (with obstacle-handling

capabilities [8]) to a target location to perform further tasks
including scene understanding or object retrieval.

1.4. Data

We used the Gibson 3D dataset [13]. This is a dataset
of indoor spaces collected from real spaces by 3D scanning
and reconstruction. The dataset includes a diverse set of
environments including households, offices, museums, hos-
pitals, etc. Inorder to incorporate realism, the data comes
with no GPS or Compass and has some introduced noisy
actuation and sensing. For each space, the dataset also in-
cludes:

• 3D reconstruction

• RGB images

• Depth images

• Semantic maps

Figure 1. Example for episode start and end

The dataset is comprised of 572 different environments,
of which we have used a subset of 4+ rated 72 environ-
ments. Prior work[1] suggests these 72 environments pro-
vide high quality photo-realistic simulations with no holes
and rendering issues. We generated optimal actions and cor-
responding observations on the fly since saving all the data
to a disk comes at a memory cost. Dataset was generated
sequentially as follows:

• Navigable data collection: A subset of 50k trajecto-
ries including start and end points were generated per
scene. These trajectories included start and end points
randomly selected for each scene. To ensure random-
ness, we selected a sample of trajectories from each
scene to generate batches of training and validation
data.

Timestep
N

um
be

r o
f t

ra
je

ct
or

ie
s

Figure 2. Scaled down representation of RNN Dataloader

Figure 3. RGB image and top-down-map for shortest path follower

• Optimal actions and observations: We used classi-
cal path planning algorithm namely, shortest path fol-
lower (figure 3) to generate shortest path optimal ac-
tions and corresponding observations for each trajec-
tory in a batch.

• Data-loading: Pytorch data loader was used along
with padding and collating for each batch of training
and validation data (figure 1.4). Padding and collating
was incorporated to handle variable length sequencing.
We padded trajectories shorter than the maximum tra-
jectory length with 0s and subsequent actions with -
1s. The final data loader is temporal in nature and
comprised of the shape (N,T,C,H,W) where N denotes
batch size, T captures the time domain temporal in-
formation as a trajectory progresses inside an environ-
ment, and C,H,W comprise of the RGB channel di-
mensions.

2. Approach
The use of supervised learning for navigation in photo

realistic environments (like those provided in Habitat) has
been lesser explored than RL based agents. RL, although

ubiquitous, provides sparse rewards to the agent. SL, on the
other hand, provides more immediate rewards to the agent
and assists in faster learning. Another merit for SL is it
uses gradient decent on a loss function. With correct weight
solutions, each step of gradient update takes the model one
step closer to the optimum. Equipped with above facts, we
wanted to see if the supervised approach offers interesting
advantages/insights over traditional RL approaches through
this work. Additionally, an imitation learning based agent is
not part of the Habitat platform currently, which we found
an exciting area to venture into.

2.1. Supervised Learning

We formulate the point goal navigation task as a super-
vised learning problem. Given an observation state (x) and
label (y) which is the optimal action that the agent should
take at this state, our task is to find a mapping function
y = f(x) which takes the robot from an initial configu-
ration to a goal configuration in the most optimal way.

2.1.1 Sequence to Sequence Model:

We further divide this formulation into a sequence to se-
quence problem. Though prior work [5] has shown great
promise of Convolution Neural Networks to get a mapping
of actions directly from images, we use a Recurrent Neural
Network because our data is temporal in nature and depen-
dencies between observations at each time step are an im-
portant aspect of the problem. A CNN fails to capture such
dependencies.

Hence we model our architecture (figure 4) using an
LSTM[6] based encoder decoder. Our observation space
x̃ = x1, x2,xn is comprised of images at each time-step
along the trajectory.

Image Embedding: Each trajectory ti is stacked and
presented as a batch to Resnet-18 for feature extraction. We
aim to get a concise representation of features from dense
raw images available as input. The architecture of Resnet-
18 was modified to get a final output equivalent to CNN
embed dimension. We sequentially process each time step
of a batch of trajectories to get a concise feature represen-
tation at each time step. We denote the output of encoding
as featurei = CNNenc(ti). We concatenate this output
along the time dimension to get a feature representation of
all time steps in the trajectory.

Action Space: Our actions space is discrete and com-
prises of 6 different actions as follows: stop, move
forward, turn left, turn right, look
up, look down. move forward takes a 0.25m
forward step in the environment whereas turn left,
turn right, look up, look down moves the
agent’s heading by 30 degrees in the environment.

Action prediction using LSTM Decoder: We present

CNN

lin
ea

r

image feature
vector

embedded image
feature vector

(300)

LS
TM

softmax softmax softmax

lin
ea

r

lin
ea

r

lin
ea

r

1 0 0 0 0 00 0 0 0 0 1 0 0 1 0 0 0
action
vector

51
2

51
2

51
2

ResNet-18

Trajectory Sequence

softmax

lin
ea

r

0 0 1 0 0 0

51
2

C
N

N

Em
be

d

C
N

N

Em
be

d

C
N

N

Em
be

d

C
N

N

Em
be

d

(224,224,3)

Stacked CNN Embeddings

Figure 4. Encoder Decoder Architecture for temporal domain sequence information

the output of encoder as a sequence to an LSTM to get
the output as hi = LSTMdec(featurei, hi−1). More-
over, we use a fully connected layer and a softmax layer
oi = softmax(linear(hi)) at the output of LSTM to get a
6 dimensional output comprising of 6 actions.

Loss and Optimizer: Since our action space is discrete,
we use a Negative Loss Likelihood Loss to compute mean
loss for all data points using the following equation:

lossi =

M∑
n=1

yi log pi (1)

We backdrop through the loss and perform gradient descent
using Adam optimizer to optimize the weights of our neu-
ral networks. Since we use Resnet-18 as feature extractor,
we only optimize the weights of fully connected layers in
our CNN. For RNN, we optimize the weights of our entire
model.

2.2. Comparison with Baselines

We also compared our approach against various base-
lines for this task:

Reinforcement Learning method - Proximal Policy
Optimization (PPO) [14] The Proximal Policy Algorithm
(PPO) is built on top of actor critic architecture and com-
bats some of the major limitations of actor critic like deal-
ing with outlier data and excessive dependence on hyperpa-
rameter tuning in addition to sudden updates to the policy.
The algorithm tries to maintain smooth gradient updates to
achieve constant improvement in performance. A major im-
provement in the PPO algorithm is the Generalized Advan-
tage Estimation (GAE) that helps in reducing variance by

stabilizing the discounted rewards. Apart from this, PPO
also uses a surrogate policy loss which is a ratio of the new
probabilities to the old probabilities multiplied by the ad-
vantage. Furthermore, this loss is clipped to make sure the
updates to the policy are gradual. The trajectories are segre-
gated into random minibatches and the network is updated
using these.
We use the PPO alogrithm as our baseline. We wanted to
see how much does GPS+compass information contribute
towards the agent’ performance. Therefore, we started our
project implementation with PPO that uses GPS informa-
tion. The algorithm was evaluated using the SPL metric
and final distance to goal. The plots for these have been
included in the later sections.

Classical method - SLAM based [15] This is a modu-
lar navigation pipeline. The localization module estimates
the agent’s pose in the environment and has been done us-
ing ORB-SLAM2. [16] The mapping module estimates a
2 dimensional obstacle map of the environment. The out-
puts of these 2 modules are used to plan a trajectory to the
goal by the planning module. The planning module uses the
D* Lite algorithm, which is identical to A* algorithm when
planning for the first time and updates only the costs of the
nodes that are affected by newly discovered obstacles for
subsequent planning. Finally, the locomotion module gen-
erates an action to take. In this implementation, the agent
has no prior knowledge about the environment at the start
of each episode and has to explore while navigating towards
the goal.
The issue with such classical approaches is that hand-
engineering is required to a great extent.

Active Neural SLAM An exploration architecture with

three modules, Neural SLAM, local policy and a global pol-
icy coupled with a path planner and map when transferred
to Point Goal Navigation task has proven to perform the
best in Habitat 2019 challenge. Motivated by the paper [2],
we tried exploring ways to produce free space maps and
estimate agents pose. The technique here takes advantage
of the various regularities present in the layout in simulator
and real world. The paper [2] additionally introduces their
custom motion and sensor data collected. This domain of
study adapts to a reward based system. Reward here is the
maximization of the coverage, i.e. the total area in the map
that can be traversed.

Three modules that make up the architecture have their
individual roles. Mapper made of ResNet18 followed by 2
fully connected layers, dropout and then 3 deconvolutional
layers coupled with a pose estimator made of 3 convolu-
tional layers followed by 3 dense layers make up the Neural
SLAM module. It predicts the map and agent pose based on
current state and past predictions. This predicted map and
pose is used by the Global policy to generate a long term
goal which is broken down into short term goals using path
planning. This module is 5 layer CNN with 3 dense layers.
Local policy made of pretrained ResNet18 CNN followed
by dense and GRU layers then takes navigational actions
based on current state in order to reach this short-term goal.
Figure 2.2 shows a sample run, where blue circles are long
term goals, green patches are map predictions, red lines are
agent pose predictions and grey areas the ground truth.

Figure 11 is the reward plot for this exploration al-
gorithm. Reward here is proportional to the increase in
coverage area. We see that once the models are trained,
they perform quite well on unexplored scenes and are able
to chart the map intelligently. This not only helps us with
this experiment, rather makes it a potential feature to be
included in our proposed Imitation learning algorithm too.
For this we aim to stack maps with our input images and
feed it into our network. We tend to incorporate this into
our future work.

Figure 5. Sample Neural SLAM Run

2.3. Challenges and Issues

We tried to get our dataloader in place for imitation
learning as the first step. There were two possible avenues
to try for this, one that structured a dataloader as a RNN
while the other that used a CNN regime. While using a
CNN to encode state-action pairs did seem plausible, a de-
merit was that all temporal information about trajectories
was lost. The CNN rendered state images independent of
each other. A workaround for this is using additional feature
engineering to encode the temporal information of trajecto-
ries. RNN, on the other hand, worked better as it preserved
sequences of trajectories. Therefore, we decided to go for
RNN dataloader.

Along with this, there were other challenges as well. To
start with, while writing the data-loader for the input to
training loop was that trajectories were of varying lengths.
We had to pad them, which was accompanied with padding
the corresponding actions. As the actions were being repre-
sented by one hot vectors, padding actions with zeros was
problematic. To counter this issue, we padded actions with
-1s and images with 0s. We then ignored the padded val-
ues while calculating CNN and RNN forward passes, cross
entropy loss and accuracy.

A challenge with loading a large image data-set of the
form (N,T,C,H,W) is the large GPU memory requirements
needed. We encountered several stoppages during our train-
ing because of GPU memory overload issue. We worked
around this issue by using a small batch size and ignoring
trajectories greater than 120 steps in length. Moreover, re-
source limitations allowed us to train on a subset of training
data.

The Matterport 3D scenes were modified on the Habi-
tat repositories while researchers were working on making
the meshes take less GPU memory. We believe modifica-
tions may have similarly been made for the Gibson scenes,
because some scenes were not being rendered while we
were running baselines on them. This incompatibility with
more recent versions created issues during the course of the
project. So we eliminated those scenes and went ahead with
the working ones.

Installing and importing ORB-SLAM2 took an unex-
pectedly long time. There are open Github issues with pos-
sible solutions for this and we initially could not find a fix
even after trying all of them. However, we were able to
create a soft link between the required dependencies and re-
solve the problem without making changes to the cmake file
(as most online solutions suggested). This is a fix that we
believe would help other people as well.

2.4. Code repositories

We have used the following external code repositories in
our work. We thank the authors of these works for making
these publicly available.

• Habitat API [17] [1]

• Active Neural Slam [19]

3. Experiments and Results
For our baselines, we were able to experiment with the

models used and the hyper-parameters tuned. For our PPO
experiment we had leveraged the pre-trained models from
[17]. Post this we did an extensive training and tuning
of the hyper-parameters involving learning rates, optimizer,
number of episodes, batch size, epochs, and learning decay.
On similar lines we have trained our Active Neural SLAM
module, where we used the pre-trained models for local pol-
icy, global policy and the neural slam module and carried
a hyper-parameter tuning. For SLAM we have trained it
from scratch and tried various hyper-parameters and have
reported the best results.

Evaluation Metrics
We used the Success weighted by Path Length (SPL) met-
ric to assess the performance of our approach. Intuitively,
this suggests how accurately the agent was able to traverse
a trajectory while staying on an optimal path[18]. For be-
havior cloning/imitation learning approach, we considered
accuracy as a metric.

SPL =
1

N

N∑
i=1

Si
li

max(pili)
(2)

where li = length of shortest path between goal and target
for an episode, pi = length of path taken by an agent in
an episode and Si is the binary indicator of success in an
episode.

The agent is considered to have successfully navigated
through a trajectory if its position in the environment is
within twice its radius of the target coordinates after call-
ing the STOP action. We conducted our experiments and
compared against recent baselines for point goal navigation.
Experiments and results for each approach are detailed as
follows:

3.1. Supervised Learning (Our Approach)

Our experiments were based on teacher forcing crite-
ria. In these experiments, we aim to maximize the likeli-
hood of getting the most optimal action a? given a previous
state-action sequence and the current ground truth label a.
Teacher forcing always selects the current optimal ground
truth label a for the prediction of future outputs.

3.1.1 Implementation

For encoding, we used Transfer Learning and extracted fea-
tures from a pre-trained resnet-18 architecture previously
trained for Image-net dataset [11]. We performed minimal

Parameter Value
Batch size 20
Trainloader Size 720
No. of epochs 100
Encoder Parameters
CNN Embed dim 300
Dropout 0.3
Decoder Parameters
Input size 300
Hidden size 140
No. of layers 3
Dropout 0.3
No. of classes 6

Table 1. Hyperparameters

data pre-processing. We cropped the images to a size of
(3,224,224) and used the same transforms previously used
while training image-net. We modified the resnet-18 archi-
tecture to remove the last fully connected layer. This block
was called ’Feature Extractor’. We then added two fully
connected layers with ReLU activation and BatchNorm. We
named this block ’Linear Block’ The purpose of adding a
separate Linear Block was to learn the weights of this block
and make better predictions about the extracted features.

We collectively learned the parameters of the encoder
Linear Block and complete decoder architecture and used
an Adam Optimizer for optimization. We used Pytorch to
train our model for a fixed epoch of 30. We only trained
on a subset of training data due to resource limitations. Our
complete batch comprised of 100 batches with 720 trajec-
tories in a single batch. We trained on the first batch for our
experiments.

Table 1 presents our choice of hyper parameters for both
encoder and decoder. We selected these hyper parame-
ters using prior information available such as the output of
resnet feature extractor and size of RNN input block.

3.1.2 Results

Our results 6 show decreasing training and validation loss
for 200 epochs. Similarly, an increasing accuracy for train-
ing and validation suggests that the promise of supervised
learning for point goal navigation. Loss and accuracy trends
also reveal that the model is under fitting to the data. This
is a reasonable and expected output since we have trained
on a subset of the batch due to resource constraints. This
also suggests that increasing the batch size would positively
effect the training and validation accuracy and losses.

The validation loss and accuracy curve suggests that the
model is able to generate good prediction for unseen data
set. However, more experiments needs to be conducted to
predict the performance on unseen data-set in real-time sim-

Figure 6. Training Loss/Validation Loss and Training Accuracy/Validation Accuracy for Supervised Learning

ulation environment where one wrong action can start a rip-
ple effect on the overall navigation trajectory and may lead
the agent astray.

Figure 7. Baseline1: SPL plot for PPO

Figure 8. Baseline1: Distance to goal plot for PPO

3.2. Inferences for Baselines

• We see from the plots for PPO (figures 7, 8, 9) that the
SPL and distance to goal was initially low but as the
number of updates to the policy increased, these met-
rics on the validation set increased as well. We were

Figure 9. Baseline1: Loss plot for PPO

Figure 10. Baseline2: SPL plot for Classical SLAM

Method Metric Value
Behavior cloning Accuracy 56%
PPO SPL 0.3
SLAM SPL 0.018
NeuralSLAM Rewards 38-100

Table 2. Results

Figure 11. Baseline3: NeuralSLAM reward

able to achieve sharp increases for the SPL and we be-
lieve that if we had enough computational resources
and time, we would have been able to train for longer
and achieve even better results for the validation data.

• For the NeuralSLAM model, we see a sharp initial rise
in the rewards (figure 11) but it slowly plateaus to a
constant value. One of the possible reasons for this
could be noise in the data or the agent hitting an obsta-
cle. We saw that the agent was not able to navigate to
the goal. The plot included is for one validation scene.
We faced several technical issues in validating this ap-
proach on all scenes. Therefore, the results obtained
are not conclusive to draw any general trends.

• An issue with SLAM is the reproducibility of results.
Some of the episodes are such that the goals are
unreachable. In this case, the algorithm fails because
tracking is lost due to difficulty of environment
mapping. The implementation resets the map in these
scenarios, which is why we believe a range of 0 values
have been reported for SPL (figure 10). These are
indeed hard episodes that should be eliminated before
training. Slam approach gave similar results for mat-
terport data as well which has been highlighted here.
https://github.com/facebookresearch/
habitat-api/issues/270

4. Project Takeaways

Modelling to reflect structure of problem: The navi-
gation task is inherently a time series data of information
(in the form of images) as an agent traverses through
an environment. This is a sequential task where future
observations are dependent on previous actions. Using an
RNN was appropriate here as input is handled in time steps
and the agent can be equipped with short-term memory. As
the agent moves, it needs to create and maintain internal
representations of its environment, so it is important to use
structures that can work with these representations.

Supervised Learning vs Reinforcement Learning Al-
though Reinforcement learning has proven to be really suc-
cessful in solving many problems, Supervised Learning
can provide great advantages over Reinforcement Learn-
ing in our case. Faster time convergence, less sample ef-
ficiency and Sim2Real are some of the advantages of Su-
pervised Learning over Reinforcement Learning for Navi-
gation. However, lesser generalization capability makes it
much harder for Supervised Learning to be effective in a
wide range of tasks and scenarios.

5. Work Division
We all gained a working knowledge of the theory and

technical aspects of each component of the project. We
decomposed all the project work into parts and each took
ownership of a specific task, providing help and insights
into each others’ work when required. Table 3 highlights
these tasks for each member of the team.

6. Future Work
To fit the model better, the work needs to be expanded to

train on the complete training dataset available in Habitat.
Additionally, student forcing model needs to be developed
for this work to make the training and test distribution sim-
ilar. To improve the generalization performance to unseen
data, a data-set aggregation algorithm needs to be developed
and tested. Lastly, we propose using maps as additional fea-
tures along with RGB images to the RNN model. A map
provides a representation of an environment with informa-
tion about obstacles and navigable paths. An example of
such a map would be the Bird’s eye view images (such as
that generated by SPF in figure 3). However, the unavail-
ability of pre-generated maps during test time is a challenge
with this approach. Hence, we propose using ground truth
maps as labels and using an intermediate architecture to pre-
dict local maps as the agent traverses an environment. This
intermediate architecture would then feed into the local pol-
icy to predict optimal actions.

References
[1] Savva, Kadian, et al. ”Habitat: A Platform for Embodied AI

Research” arXiv preprint arXiv:1904.01201 (2019).

[2] Chaplot, Gandhi et al. ”Learning to Explore using Active
Neural SLAM” arXiv:2004.05155 (2020).

[3] Ye, Yang ”From Seeing to Moving: A Survey on Learn-
ing for Visual Indoor Navigation (VIN)” arXiv:2002.11310
(2020).

[4] Ross, Gordon, Bagnell ”A Reduction of Imitation Learn-
ing and Structured Predictionto No-Regret Online Learning”
arXiv:1011.0686 (2011).

https://github.com/facebookresearch/habitat-api/issues/270
https://github.com/facebookresearch/habitat-api/issues/270

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B.
Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J.
Zhang et al., End to end learning for self-driving cars, 2016.

[6] Hochreiter, S., Schmidhuber, Jü. (1997). Long short-term
memory. Neural computation, 9, 1735–1780.

[7] Kelly, Sidrane, et al. ”HG-DAgger: Interactive Imitation
Learning with Human Experts” arXiv:1810.02890 (2019).

[8] Tolani, Bansal, et al. ”Visual Navigation Among Humans
with Optimal Control as a Supervisor” arXiv:2003.09354
(2020).

[9] https://ai.googleblog.com/2019/02/long-range-robotic-
navigation-via.html

[10] Zhu, Mottaghi, et al. ”Target-driven Visual Navigation
in Indoor Scenes using Deep Reinforcement Learning”
arXiv:1609.05143 (2016).

[11] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.
(2009). Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition (pp. 248–255).

[12] Wijmans, Kadian, et al. ”DD-PPO: Learning Near-
Perfect PointGoal Navigators from 2.5 Billion Frames”
arXiv:1911.00357 (2020).

[13] Xia, Zamir, He, et al. ”Gibson env: real-world perception for
embodied agents” arXiv:1808.10654 (2018).

[14] Schulman, et al. ”Proximal Policy Optimization Algorithms”
arXiv:1707.06347 (2017).

[15] Mishkin, Dosovitskiy, Koltun. ”Benchmarking Classic
and Learned Navigation in Complex 3D Environments”
arXiv:1901.10915 (2019).

[16] Artal, Tardos. ”ORB-SLAM2: an Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras”
arXiv:1610.06475 (2017).

[17] https://github.com/facebookresearch/habitat-api

[18] Anderson, Chang, et al. ” On evaluation of embodied navi-
gation agents” arXiv:1807.06757 (2018).

[19] https://github.com/devendrachaplot/Neural-SLAM

Student Name Contributed Aspects Details
Asawaree Implementation of SLAM Habitat docker setup;

Training, hyperparametering tuning for SLAM
Testing SLAM
Written report

Shrija Implementation of Neural SLAM Training, hyperparameter tuning, testing for NeuralSLAM;
Analysis and Testing for Neural SLAM
Testing SLAM metrics
Result visualization for baselines
Written report

Shubhangi Implementation of PPO Trained and fine-tuned hyperparameters for PPO algorithm;
Analyzed results obtained;
Initial data prerocessing for generating trajectories from gibson
scenes and getting object annotations
Written report

Zubair Implementation of Supervised Learning Benchmark Written code to get shortest path observations and ground
truth actions for a trajectory
Implemented variable length data-loader with padding and
collating in pytorch
Implemented Encoder Decoder Architecture in pytorch
Implemented training pipeline and performed experiments to
evaluate effectiveness of supervised learning
Written report

Table 3. Contributions of team members.

	. Introduction
	. Motivation
	. Related Work
	. Impact
	. Data

	. Approach
	. Supervised Learning
	Sequence to Sequence Model:

	. Comparison with Baselines
	. Challenges and Issues
	. Code repositories

	. Experiments and Results
	. Supervised Learning (Our Approach)
	Implementation
	Results

	. Inferences for Baselines

	. Project Takeaways
	. Work Division
	. Future Work

